КОНВЕРСИЯ СO2 В CO В ИСКРОВОМ РАЗРЯДЕ С ОГРАНИЧЕННЫМ ЭНЕРГОВКЛАДОМ
Аннотация и ключевые слова
Аннотация (русский):
Проведена проверка предположения о том, что ограничение энерговклада в плазму импульсного разряда обеспечивает конверсию углекислого газа в CO. Для этого использовали два варианта: 1) схему разрядного промежутка, в которой один электрод был высоковольтным, а другой имел ёмкостную развязку с заземлением (~ 2‒3 пФ); 2) схему с ёмкостной развязкой, в которой нагрузкой служило несколько разрядных промежутков, что обеспечивало распределенный режим ввода энергии в промежутки от одного источника питания. В обоих вариантах подача углекислого газа при атмосферном давлении в разрядные промежутки обеспечивала частичную конверсию CO2 → CO, что регистрировалось на ИК-Фурье-спектрах полученных смесей. Сделано предварительное заключение о том, что первый вариант обработки эффективнее обеспечивает конверсию.

Ключевые слова:
ИК-Фурье спектр, импульсный разряд, монооксид углерода, углекислый газ.
Список литературы

1. Advances in CO2 utilization: From Fundamentals to Applications / Eds. G.-L. Zhang, A. Bogaerts, J.-Y. Ye, Ch.-J. Liu. ‒ Singapore: Springer Nature Singapore, 2024. ‒ Green Chemistry and Sustainable Technology. DOIhttps://doi.org/10.1007/978-981-99-8822-8.

2. Pietanza L.D., Guaitella O., Aquilanti V., Armenise I., Bogaerts A., Capitelli M., Colonna G., Guerra V., Engeln R., Kustova E., Lombardi A., Palazzetti F., Silva T. Advances in non-equilibrium CO2 plasma kinetics: a theoretical and experimental review // The European Physical Journal D. 2021. V. 75. iss. 9. 237. DOI:https://doi.org/10.1140/epjd/s10053-021-00226-0.

3. Snoeckx R., Bogaerts A. Plasma technology – a novel solution for CO2 conversion? // Chemical Society Review. 2017. V. 46, iss. 19. P. 5805‒5863. DOI:https://doi.org/10.1039/c6cs00066e.

4. Yin Y.-X., Yang T., Li Zh., Devid E., Auerbach D., Kleyn A.W. CO2 conversion by plasma: how to get efficient CO2 conversion and high energy efficiency // Phys. Chem. Chem. Phys. 2021. V. 23. iss. 13. P. 7974‒7987. DOI:https://doi.org/10.1039/d0cp05275b.

5. Лебедев Ю.А., Шахатов В.А. Разложение СО2 в барьерном разряде атмосферного давления // Успехи прикладной физики. 2022. Т. 10. № 2. С. 109‒131. DOI:https://doi.org/10.51368/2307-4469-2022-10-2-109-131.

6. Sosnin E.A., Naidis G.V., Tarasenko V.F., Skakun V.S., Panarin V.A., Babaeva N.Yu. On the Physical Nature of Apokampic Discharge // Journal of Experimental and Theoretical Physics. 2017. V. 125. iss. 5. P. 920–925. DOI:https://doi.org/10.1134/S1063776117100168.

7. Sosnin E.A., Naidis G.V., Tarasenko V.S., Skakun V.S., Panarin V.A., Babaeva N.A., Baksht E.Kh., Kuznetsov V.S. Apokamps produced by repetitive discharges in air // Physics of Plasmas. 2018. V. 25. iss. 8. 083513. DOI:https://doi.org/10.1063/1.5038099.

8. Carbon monoxide // NIST Data. https://webbook.nist.gov/cgi/cbook.cgi?ID=C630080&Type=IR-SPEC&Index=1. (дата обращения: 25.05.2025).

Войти или Создать
* Забыли пароль?