Nacional'nyy issledovatel'skiy Tomskiy gosudarstvennyy universitet
UDC 537.523.5
UDC 661.974
CSCSTI 29.33
Russian Classification of Professions by Education 03.03.02
Russian Library and Bibliographic Classification 223
Russian Trade and Bibliographic Classification 6135
BISAC TEC019000 Lasers & Photonics
The paper verifies the assumption that limiting the energy input into the plasma of a spark discharge ensures the conversion of carbon dioxide into CO. Two options were used for this: 1) a spark gap circuit in which one electrode was high-voltage and the other had a capacitive decoupling with grounding (~ 2-3 pF); 2) a capacitive decoupling circuit in which several discharge gaps served as a load, which provided a distributed mode of energy input from a single power source. In both variants, the supply of carbon dioxide at atmospheric pressure to the discharge gaps provided partial conversion of CO2 → CO, which was recorded on the FTIR spectra of the mixtures obtained. A qualitative conclusion has been made that the first processing option provides a more efficient conversion.
carbon dioxide, carbonyl, spark discharge
1. Advances in CO2 utilization: From Fundamentals to Applications / Eds. G.-L. Zhang, A. Bogaerts, J.-Y. Ye, Ch.-J. Liu. ‒ Singapore: Springer Nature Singapore, 2024. ‒ Green Chemistry and Sustainable Technology. DOIhttps://doi.org/10.1007/978-981-99-8822-8.
2. Pietanza L.D., Guaitella O., Aquilanti V., Armenise I., Bogaerts A., Capitelli M., Colonna G., Guerra V., Engeln R., Kustova E., Lombardi A., Palazzetti F., Silva T. Advances in non-equilibrium CO2 plasma kinetics: a theoretical and experimental review // The European Physical Journal D. 2021. V. 75. iss. 9. 237. DOI:https://doi.org/10.1140/epjd/s10053-021-00226-0.
3. Snoeckx R., Bogaerts A. Plasma technology – a novel solution for CO2 conversion? // Chemical Society Review. 2017. V. 46, iss. 19. P. 5805‒5863. DOI:https://doi.org/10.1039/c6cs00066e.
4. Yin Y.-X., Yang T., Li Zh., Devid E., Auerbach D., Kleyn A.W. CO2 conversion by plasma: how to get efficient CO2 conversion and high energy efficiency // Phys. Chem. Chem. Phys. 2021. V. 23. iss. 13. P. 7974‒7987. DOI:https://doi.org/10.1039/d0cp05275b.
5. Lebedev Yu.A., Shahatov V.A. Razlozhenie SO2 v bar'ernom razryade atmosfernogo davleniya // Uspehi prikladnoy fiziki. 2022. T. 10. № 2. S. 109‒131. DOI:https://doi.org/10.51368/2307-4469-2022-10-2-109-131.
6. Sosnin E.A., Naidis G.V., Tarasenko V.F., Skakun V.S., Panarin V.A., Babaeva N.Yu. On the Physical Nature of Apokampic Discharge // Journal of Experimental and Theoretical Physics. 2017. V. 125. iss. 5. P. 920–925. DOI:https://doi.org/10.1134/S1063776117100168.
7. Sosnin E.A., Naidis G.V., Tarasenko V.S., Skakun V.S., Panarin V.A., Babaeva N.A., Baksht E.Kh., Kuznetsov V.S. Apokamps produced by repetitive discharges in air // Physics of Plasmas. 2018. V. 25. iss. 8. 083513. DOI:https://doi.org/10.1063/1.5038099.
8. Carbon monoxide // NIST Data. https://webbook.nist.gov/cgi/cbook.cgi?ID=C630080&Type=IR-SPEC&Index=1. (data obrascheniya: 25.05.2025).