УДК 621.373.8 Квантовые генераторы. Лазеры
ГРНТИ 29.33 Лазерная физика
ОКСО 03.04.02 Физика
ББК 223 Физика
ТБК 6135 Оптика
BISAC TEC019000 Lasers & Photonics
Целью настоящего исследования является согласование работы полупроводникового источника на основе LTD-технологии с активным элементом на парах бромида меди, оснащенного генератором электроотрицательной добавки HBr. Согласование производилось путем подбора величины обостряющего конденсатора, подключенного параллельно электродам активного элемента, и повышающего автотрансформатора, установленного между источником и активным элементом.
LTD, ЛПГМ, обостряющий конденсатор, автотрансформатор.
1. Trigub M.V., Shiyanov D.V., Evtushenko G.S. Amplifying characteristics of the active unit of a copper chloride laser with a built-in reactor // Russian Physics Journal. 2013. Vol. 55, № 10. P. 1152–1156.
2. Shiyanov D., Trigub M., Sokovikov V., Evtushenko G. MnCl2 laser with pulse repetition frequency up to 125 kHz // Optics & Laser Technology. 2020. Vol. 129. P. 106302.
3. Тригуб М.В., Евтушенко Г.С., Губарев Ф.А., Торгаев С.Н. Лазерный монитор с возможностью покадровой регистрации изображений // Контроль. Диагностика. 2011. № S. P. 140–143.
4. Осипов В.В., Евтушенко Г.С., Лисенков В.В., Платонов В.В., Подкин А.В., Тихонов Е.В., Тригуб М.В., Федоров К.В. Эволюция лазерного факела в процессе получения нанопорошка с использованием волоконного иттербиевого лазера // Квантовая электроника. 2016. Vol. 46, № 9. P. 821–828.
5. Bokhan P.A., Gugin P.P., Zakrevskii Dm.E., Lavrukhin M.A. Frequency and energy characteristics of a Cu – Ne laser at different durations of the leading edge of the excitation pulse // Quantum Electronics. – 2019. – Vol. 49. – № 8. – P. 749–753.
6. Little C.E. Metal Vapour Lasers: Physics, Engineering and Applications. 1st edition. Chichester ; New York: Wiley, 1999. 646 p.
7. Shiyanov D.V., Evtushenko G.S., Sukhanov V.B., Fedorov V.F. A copper bromide vapour laser with a high pulse repetition rate // Quantum Electronics. – 2002. – Vol. 32. – № 8. – P. 680–682.
8. Marshall G.D., Coutts D.W. Repetition rate scaling up to 100 kHz of a small-scale (50 W) kinetically enhanced copper vapor laser // IEEE Journal of Selected Topics in Quantum Electronics. – 2000. – Vol. 6. – № 4. – P. 623–628.
9. Kimura H., Aoki N., Kobayashi N., Konagai C., Seki E., Abe M., Mori H. Development of high-power copper vapor laser system / ed. Mima K., Kulcinski G.L., Hogan W.J. Osaka, Japan. – 2000. – P. 550.
10. Le Guyadec E., Nouvel P., Regnard P. A large volume copper vapor +HCI--H/sub 2/ laser with a high average power // IEEE Journal of Quantum Electronics. – 2005. – Vol. 41. – № 6. – P. 879–884.
11. Kostadinov I.K., Temelkov K.A., Astadjov D.N., Slaveeva S.I., Yankov G.P. High-power CuBr laser systems excited by bipolar electric power supply // Optical and Quantum Electronics. – 2023. – Vol. 55. – № 14. – P. 1291.
12. Trigub M.V., Gembukh P.I., Semenov K.Yu. CoolMOS based high-voltage power supply with PRF up to 200 kHz for metal vapor active media excitation // Optical and Quantum Electronics. – 2023. – Vol. 55. – № 12. – P. 1103.
13. Semenov K.Y., Gembukh P.I., Trigub M.V. High-voltage pulse generator based on LTD concept for CuBr + Ne + HBr laser media excitation // Electrical Engineering. – 2024.



