RECOGNITION OF THE POLARIZATION STRUCTURE OF SYNTHESIZED VECTOR BEAMS IN A TURBULENT ATMOSPHERE FROM INTENSITY IMAGES BY NEURAL NETWORKS
Abstract and keywords
Abstract (English):
In recent years, various approaches to using laser beams to increase the capacity of information transmission channels have been actively studied. In atmospheric optical communication channels, it is important to determine the characteristics of beams that can carry additional information when beams are distorted in the turbulent atmosphere. Coherent laser beam combining systems are promising for transmitting information encoded in the polarization structure of a laser beam, as they allow it to be changed at high frequencies. In addition to developing methods for encoding information with structured beam parameters, it is also necessary to develop methods for their receiving and decoding. Determining the polarization structure of a beam distorted by a turbulent atmosphere is a non-trivial task. The aim of this study is to investigate the possibility of using neural networks to determine the polarization structure of synthesized laser beams through intensity distribution images distorted by atmospheric turbulence. The study is based on numerical simulation. For the first time, it has been shown that the use of neural networks makes it possible to distinguish a linearly polarized synthesized beam from a beam with an inhomogeneous polarization distribution formed by sub-beams with azimuthally or radially distributed polarizations in a turbulent atmosphere.

Keywords:
polarization, polarization structure, coherent combining, turbulent atmosphere, neural network
Text
Text (PDF): Read Download
References

1. Wang, J. Advances in communications using optical vortices // Photonics Res. 2016. V. 4, Iss. 5. P. B14–B28. DOI: https://doi.org/10.1364/prj.4.000b14

2. Willner, A. E., Huang, H., Yan, Y., Ren, Y., Ahmed, N., Xie, G., Bao, C., Li, L., Cao, Y., Zhao, Z., Wang, J., Lavery, M. P. J., Tur, M., Ramachandran, S., Molisch, A. F., Ashrafi, N., & Ashrafi, S. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics. 2015. V. 7, Iss. 1, P. 66–106. DOI: https://doi.org/10.1364/aop.7.000066

3. Huang, H., Xie, G., Yan, Y., Ahmed, N., Ren, Y., Yue, Y., Rogawski, D., Willner, M. J., Erkmen, B. I., Birnbaum, K. M., Dolinar, S. J., Lavery, M. P. J., Padgett, M. J., Tur, M., & Willner, A. E. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength // Opt. Lett. 2014. V. 39, Iss. 2. P. 197 –200. DOI: https://doi.org/10.1364/ol.39.000197

4. Adamov E.V., Aksenov V.P., Dudorov V.V., Kolosov V.V., Levitskii M.E. Controlling the spatial structure of vector beams synthesized by a fiber laser array // Opt. Laser Technol. 2022. V. 154. DOI: https://doi.org/10.1016/j.optlastec.2022.108351

5. Adamov, E. V., Bogach, E. A., Dudorov, V. V., Kolosov, V. V., Levitskii, M. E. Controlling the polarization structure of vector beams synthesized by a fiber laser array // Opt. Commun. 2024. V. 559. DOI: https://doi.org/10.1016/j.optcom.2024.130399

6. Machavariani G., Lumer Y., Moshe I., Meir A., Jackel S., Davidson N. Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes // Appl. Optics. 2007. V. 46, Iss. 16. P. 3304–3310. DOI: https://doi.org/10.1364/AO.46.003304

7. Wang, B., Zhang, X., Shah, S. A. A., Merabet, B., Kovalev, A. A., Stafeev, S. S., Kozlova, E. S., Kotlyar, V. V., & Guo, Z. Top three intelligent algorithms for OAM mode recognitions in optical communications // Eng. Res. Express. 2024. V. 6, N. 3. DOI: https://doi.org/10.1088/2631-8695/ad61bc

8. Wang, Z., Dedo, M. I., Guo, K., Zhou, K., Shen, F., Sun, Y., Liu, S., & Guo, Z. Efficient Recognition of the Propagated Orbital Angular Momentum Modes in Turbulences with the Convolutional Neural Network // IEEE Photonics J. 2019. V. 11, Iss. 3. DOI: https://doi.org/10.1109/JPHOT.2019.2916207

9. Bogach E.A., Adamov E.V., Dudorov V.V., Kolosov V.V. Raspoznavanie protivopolozhnyh po znaku orbital'nyh uglovyh momentov vihrevyh puchkov v turbulentnoy atmosfere s pomosch'yu neyronnyh setey // Optika atmosf. i okeana, 2025. T. 38, № 4, S. 247–254. DOI:https://doi.org/10.15372/AOO20250401

10. Aksenov V.P., Dudorov V.V., Kolosov V.V. Characterization of vortex beams synthesized on the basis of a fiber laser array // Proc. SPIE. 2015. V. 9680. P 96802D-1–96802D-7. DOI: http://dx.doi.org/10.1117/12.2206152

11. Adamov, E. V., Bogach, E. A., Dudorov, V. V., Kolosov, V. V., Levitskii, M. E. Adaptive control of the polarization structure of synthesized beams in a turbulent atmosphere // Proc. SPIE. 2023. V. 12780. P. 127801H-1–127801H-5. DOI: http://dx.doi.org/10.1117/12.2691156

12. Szegedy C., Vanhoucke V., Ioffe S., Shlens J., Wojna, Zb. Rethinking the Inception Architecture for Computer Vision // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016.P. 2818– 2826. DOI: http://dx.doi.org/10.1109/CVPR.2016.308

Login or Create
* Forgot password?