Rossiyskiy universitet transporta
UDC 530.182
UDC 535-15
CSCSTI 29.33
Russian Classification of Professions by Education 03.03.02
Russian Library and Bibliographic Classification 223
Russian Trade and Bibliographic Classification 6135
BISAC TEC019000 Lasers & Photonics
The results of numerical simulation of self-focusing and filamentation of high-power femtosecond laser pulses with varying pressure of the gas medium in which the radiation propagates are presented. The use of this approach is associated with the possibility of using the results obtained in laboratory conditions with abnormally high pressure at distances of several meters for scaling to real atmospheric paths hundreds of meters long at normal pressure. The practical significance of these studies is the possibility of remote diagnostics of atmospheric components and delivering energy along extended paths in the atmosphere. This approach also has its advantages in carrying out numerical calculations, since it allows reducing the time of calculations and decreasing the required computing power. The modeling is carried out for cases of propagation of high-power femtosecond laser pulses in the self-focusing and filamentation mode under conditions of increased pressure (by 64 times). The formation of the filamentation multifocal structure is considered in detail. This case is much in evidence under conditions of increased pressure of the propagation medium. The angular beam divergence is estimated for cases of different peak pulse power with varying gas pressure of the propagation medium.
femtosecond laser pulse, nonlinear focus, self-focusing, laser filamentation, pressured gas, laser beam structure
1. Self-focusing: Past and Present. Fundamentals and Prospects / R.W. Boyd, S.G. Lukishova, Y.R. Shen (eds.). Berlin: Springer, 2009. 605 r.
2. Braun A., Korn G., Liu X., Du D., Squier J., Mourou G. Self-channeling of high-peak-power femtosecond laser pulses in air // Optics Letters. 1995. V. 20. Iss. 1. P. 73-75.
3. Nibbering E.T.J., Curley P.F., Grillon G., Prade B.S., Franco M.A., Salin F., Mysyrowicz A. Conical emission from self-guided femtosecond pulses in air// Opt. Lett. 1996. V. 21. Iss. 1. P. 62-64.
4. Brodeur A., Chien C.Y., Ilkov F.A., Chin S.L., Kosareva O.G., Kandidov V.P. Moving focus in the propagation of ultrashort laser pulses in air // Optics Letters. 1997. V. 22. Iss. 5. P. 304-306.
5. Mlejnek M., Wright E.M., Moloney J.V. Dynamic spatial replenishment of femtosecond pulses propagating in air // Opt. Lett. 1998. V. 23. P. 382-384.
6. Kompanets V.O., Shipilo D.E., Nikolaeva I.A., Panov N.A., Kosareva O.G., Chekalin S.V. Nonlinear Enhancement of Resonance Absorption at the Filamentation of a Mid-Infrared Pulse in High-Pressure Gases // JETP LETT. 2020. V. 111. P. 31-35.
7. Li S., Yu M., Cai X., Zhang H., Jin M., Wu J. Energy transmittance of focused femtosecond pulses at different air pressures // Optoelectron. Lett. 2023. V. 19. No. 10. P. 605-613.
8. Geints Y.E. Pressure scaling of femtosecond laser filamentation in air: Prospects for long-range atmospheric propagation // Optics Communications. V. 573. 2024. P.131007.
9. Berge L., Skupin S., Lederer F., Méjean G., Yu J., Kasparian J., Salmon E., Wolf J.-P., Rodriguez M., Woste L., Bourayou R., Sauerbrey R. Multiple filamentation of terawatt laser pulses in air // Phys. Rev. Lett. 2004. V. 92. P. 225002.
10. Geints Y.E., Zemlyanov A.A. Dynamics of femtosecond synthesized coronary profile laser beam filamentation in air // J. Opt. 2021. V. 23. N 10. P. 105502.
11. Geints Yu.E., Minina O.V., Zemlyanov A.A. Self-channeling of spatially modulated femtosecond laser beams in the post-filamentation region // Journal of the Optical Society of America B. 2022. V. 39, N 6. P. 1549-1556.
12. Geync Yu.E., Zemlyanov A.A., Minina O.V. Rasprostranenie fazomodulirovannyh moschnyh femtosekundnyh lazernyh impul'sov v vozduhe v rezhimah samokanalirovaniya i filamentacii // Optika atmosfery i okeana. 2022. T. 35. № 5. S. 345-355.
13. Geints Yu.E., Minina O.V. Structured Filamentation of High-Power Femtosecond Laser Radiation Modulated by Amplitude Mesh Masks // Atmospheric and Oceanic Optics. 2024. V. 37. No. 2. R. 183–191.
14. Couairon A., Mysyrowicz A. Femtosecond filamentation in transparent media // Physics Reports. 2007. V. 441. P. 47-189.
15. Kandidov V.P., Shlenov S.A., Kosareva O.G. Filamentaciya moschnogo femtosekundnogo lazernogo izlucheniya // Kvantovaya elektronika. 2009. T. 39. № 3. S. 205-228.
16. Geync Yu.E., Zemlyanov A.A., Minina O.V. Difrakcionno-luchevaya optika filamentacii: I. Formalizm difrakcionnyh luchey i svetovyh trubok // Optika atmosf. i okeana. 2018. T. 31. № 5. S. 364-371.
17. Méchain G., Couairon A., André Y.-B., D’Amico C., Franco M., Prade B., Tzortzakis S., Mysyrowicz A., Sauerbrey R. Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization // Appl. Phys. B. 2004. V. 79. N 3. P. 379 382.
18. Daigle J.-F., Kosareva O.G., Panov N.A., Wang T.-J., Hosseini S., Yuan S., Roy G., Chin S.L. Formation and evolution of intense, post-filamentation, ionization-free low divergence // Optics Communications. 2011. V. 284. № 14. P. 3601-3606.
19. Apeksimov D.V., Geync Yu.E., Zemlyanov A.A., Kabanov A.M., Matvienko G.G., Oshlakov V.K. Upravlenie harakteristikami mnozhestvennoy filamentacii femtosekundnyh lazernyh impul'sov v vozduhe // Optika atmosfery i okeana. 2019. T. 32. № 09. S. 717-725.
20. Zemlyanov A.A., Bulygin A.D., Geync Yu.E., Minina O.V. Dinamika svetovyh struktur pri filamentacii femtosekundnyh lazernyh impul'sov v vozduhe // Optika atmosfery i okeana. 2016. T. 29. № 5. S. 359-368.