ELONGATION OF PROPAGATION DISTANCE OF HIGH-INTENSITY FEMTOSECOND POST-FILAMENTATION CHANNEL
Abstract and keywords
Abstract (English):
The propagation of high-intensity laser pulses in air using a cascade of glass plates has been experimentally investigated. This method allows the maintenance of high intensity over extended distances due to Kerr lensing in a condensed medium. An analysis of the effect of the glass plate thickness on the characteristics of the post-filamentation channel has been carried out. Additionally, as a result of applying the plate cascade, the laser ignition of a high-voltage discharge using the post-filamentation channel has been successfully achieved at distances several times greater than in the case of free propagation. The results suggest that the glass plate cascade can significantly enhance the propagation range of high-intensity laser pulses, offering a promising approach for future applications in optical communications, remote sensing, and other fields requiring long-distance delivery of intense radiation.

Keywords:
filamentation, high-voltage discharge, post-filamentation channel
Text
Text (PDF): Read Download
References

1. Braun A. et al. Self-channeling of high-peak-power femtosecond laser pulses in air // Optics letters. – 1995. – T. 20. – №. 1. – S. 73-75

2. Couairon A., Mysyrowicz A. Femtosecond filamentation in transparent media // Physics reports. – 2007. – T. 441. – №. 2-4. – S. 47-189.

3. Chin S. L. et al. The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges // Canadian journal of physics. – 2005. – T. 83. – №. 9. – S. 863-905.

4. Qi P. et al. Sensing with femtosecond laser filamentation // Sensors. – 2022. – T. 22. – №. 18. – S. 7076.

5. Houard A. et al. Laser-guided lightning // Nature photonics. – 2023. – T. 17. – №. 3. – S. 231-235.

6. Wille H. et al. Teramobile: a mobile femtosecond-terawatt laser and detection system // The European Physical Journal-Applied Physics. – 2002. – T. 20. – №. 3. – S. 183-190.

7. Méjean G. et al. Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system // Applied Physics B. – 2004. – T. 78. – S. 535-537.

8. La Fontaine B. et al. Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air // Physics of plasmas. – 1999. – T. 6. – №. 5. – S. 1615-1621.

9. Rohwetter P. et al. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation // Spectrochimica Acta Part B: Atomic Spectroscopy. – 2005. – T. 60. – №. 7-8. – S. 1025-1033.

10. Zhang Z. et al. Long distance filamentation of 400 nm femtosecond laser pulses in air // Applied Physics B. – 2009. – T. 97. – S. 207-213.

11. Méchain G. et al. Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization // Applied Physics B. – 2004. – T. 79. – S. 379-382.

12. Méchain G. et al. Range of plasma filaments created in air by a multi-terawatt femtosecond laser // Optics Communications. – 2005. – T. 247. – №. 1-3. – S. 171-180.

13. Daigle J. F. et al. Formation and evolution of intense, post-filamentation, ionization-free low divergence beams // Optics Communications. – 2011. – T. 284. – №. 14. – S. 3601-3606.

14. Konstantakis P., Manousidaki M., Tzortzakis S. Encrypted optical information in nonlinear chaotic systems uncovered using neural networks // Optica. – 2025. – T. 12. – №. 2. – S. 131-139.

15. Ionin A. A. et al. Detection of thin oil films on the water surface with the help of UV filaments // Atmospheric and Oceanic Optics. – 2016. – T. 29. – S. 339-341.

16. Kosareva O. G. et al. Remote triggering of air-gap discharge by a femtosecond laser filament and postfilament at distances up to 80 m // Applied physics letters. – 2021. – T. 119. – №. 4.

17. Mitrofanov A. V. et al. Post-filament self-trapping of ultrashort laser pulses // Optics Letters. – 2014. – T. 39. – №. 16. – S. 4659-4662.

18. Gao H., Liu W., Chin S. L. Post-filamentation multiple light channel formation in air // Laser Physics. – 2014. – T. 24. – №. 5. – S. 055301.

19. Geints Y. E. et al. High intensive light channel formation in the post-filamentation region of ultrashort laser pulses in air // Journal of Optics. – 2016. – T. 18. – №. 9. – S. 095503.

20. Geints Y. E. et al. Post-filamentation propagation of high-power laser pulses in air in the regime of narrowly focused light channels // Quantum Electronics. – 2016. – T. 46. – №. 11. – S. 1009.

21. Geints Y. E. et al. Parameters of intense light channels during the postfilamentation stage of ultrashort laser radiation evolution // Atmospheric and Oceanic Optics. – 2017. – T. 30. – S. 217-221.

22. Geints Y. E. et al. Energy, spectral, and angular properties of post-filamentation channels during propagation in air and condensed media // Journal of the Optical Society of America B. – 2019. – T. 36. – №. 10. – S. G19-G24.

Login or Create
* Forgot password?