Moskovskiy fiziko-tehnicheskiy institut
Institut optiki atmosfery im. V.E.Zueva SO RAN
Moskovskiy gosudarstvennyy universitet im. M.V. Lomonosova
Moskovskiy gosudarstvennyy universitet im. M.V. Lomonosova
Moskovskiy fiziko-tehnicheskiy institut
Moskovskiy gosudarstvennyy universitet im. M.V. Lomonosova
Moskovskiy gosudarstvennyy universitet im. M.V. Lomonosova
Moskovskiy gosudarstvennyy universitet im. M.V. Lomonosova
Moskovskiy gosudarstvennyy universitet im. M.V. Lomonosova
Institut optiki atmosfery im. V.E.Zueva SO RAN
UDC 530.182
CSCSTI 29.33
Russian Classification of Professions by Education 03.04.02
Russian Library and Bibliographic Classification 223
Russian Trade and Bibliographic Classification 6135
BISAC TEC019000 Lasers & Photonics
In this paper generation of the second harmonic during filamentation of femtosecond laser pulses in air is studied. Analyzing the spatial and spectral characteristics of the second harmonic, we identify key factors affecting its generation, including the energy of the laser pulse, focusing conditions, and air pressure. Numerical investigations confirm experimental observations, showing the efficiency of second harmonic generation ~10−10.
filamentation, second harmonic generation, spatial distribution, spectral characteristics.
1. Chin S. L. et al. The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges // Canadian journal of physics. – 2005. – T. 83. – №. 9. – S. 863-905.
2. Couairon A., Mysyrowicz A. Femtosecond filamentation in transparent media // Physics reports. – 2007. – T. 441. – №. 2-4. – S. 47-189.
3. Houard A. et al. Laser-guided lightning // Nature photonics. – 2023. – T. 17. – №. 3. – S. 231-235.
4. Houard A., Mysyrowicz A. Femtosecond laser filamentation and applications // Light Filaments: Structures, challenges and applications. – 2021. – S. 11-30.
5. Blanchard V. P. et al. Characterization of a Femtosecond Plasma Filament in Air by fs/ps Hybrid Coherent Anti-Stokes Raman Scattering // AIAA SCITECH 2025 Forum. – 2025. – S. 1392.
6. Qi P. et al. Sensing with femtosecond laser filamentation // Sensors. – 2022. – T. 22. – №. 18. – S. 7076.
7. Skupin S., Bergé L. Supercontinuum generation of ultrashort laser pulses in air at different central wavelengths // Optics communications. – 2007. – T. 280. – №. 1. – S. 173-182.
8. Aközbek N. et al. Third-Harmonic Generation and Self-Channeling in Air Using High-Power Femtosecond Laser Pulses // Physical review letters. – 2002. – T. 89. – №. 14. – S. 143901.
9. Sun W., Wang X., Zhang Y. Terahertz generation from laser-induced plasma // Opto-Electronic Science. – 2022. – T. 1. – №. 8. – S. 220003-1-220003-27.
10. Bethune D. S. Optical second-harmonic generation in atomic vapors with focused beams // Physical Review A. – 1981. – T. 23. – №. 6. – S. 3139.
11. Miyazaki K., Sato T., Kashiwagi H. Spontaneous-field-induced optical second-harmonic generation in atomic vapors // Physical Review Letters. – 1979. – T. 43. – №. 16. – S. 1154.
12. Miyazaki K., Sato T., Kashiwagi H. Interaction of high-power laser pulses with atomic media. II. Optical second-harmonic generation // Physical Review A. – 1981. – T. 23. – №. 3. – S. 1358.
13. Malcuit M. S. et al. Anomalies in optical harmonic generation using high-intensity laser radiation // Physical Review A. – 1990. – T. 41. – №. 7. – S. 3822.
14. Marmet L., Hakuta K., Stoicheff B. P. Second-harmonic generation in atomic hydrogen induced by a charge-separation field // Journal of the Optical Society of America B. – 1992. – T. 9. – №. 7. – S. 1038-1046.
15. Liu X. et al. Harmonic generation by an intense laser pulse in neutral and ionized gases // IEEE transactions on plasma science. – 2002. – T. 21. – №. 1. – S. 90-94.
16. Liang Y., Watson J. M., Chin S. L. Second harmonic generation in gases with a high-intensity CO2 laser // Journal of Physics B: Atomic, Molecular and Optical Physics. – 1992. – T. 25. – №. 11. – S. 2725.
17. Fedotov A. B. et al. Generation of the second and third harmonics in a laser-produced plasma with 1-kHz 90-fs light pulses // Laser physics. – 1996. – T. 6. – №. 2. – S. 427-430.
18. Bukin V. V. et al. Femtosecond laser optical gas breakdown microplasma: the ionisation and postionisation dynamics // Quantum Electronics. – 2007. – T. 37. – №. 10. – S. 961.
19. Beresna M. et al. High average power second harmonic generation in air // Applied Physics Letters. – 2009. – T. 95. – №. 12.
20. Théberge F. et al. Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing // Physical Review E—Statistical, Nonlinear, and Soft Matter Physics. – 2006. – T. 74. – №. 3. – S. 036406.
21. Brunel F. Harmonic generation due to plasma effects in a gas undergoing multiphoton ionization in the high-intensity limit // Journal of the Optical Society of America B. – 1990. – T. 7. – №. 4. – S. 521-526.
22. Corkum P. B. Plasma perspective on strong field multiphoton ionization // Physical review letters. – 1993. – T. 71. – №. 13. – S. 1994.
23. Solyankin P. M. et al. THz generation from laser-induced breakdown in pressurized molecular gases: on the way to terahertz remote sensing of the atmospheres of Mars and Venus // New Journal of Physics. – 2020. – T. 22. – №. 1. – S. 013039.
24. Nikolaeva I. A. et al. Terahertz beam with radial or orthogonal to laser polarization from a single-color femtosecond filament // Optics Express. – 2023. – T. 31. – №. 25. – S. 41406-41419.