Nacional'nyy issledovatel'skiy Tomskiy gosudarstvennyy universitet
Russian Federation
UDC 551.510.42
CSCSTI 29.31
Russian Classification of Professions by Education 03.04.02
Russian Library and Bibliographic Classification 223
Russian Trade and Bibliographic Classification 6135
BISAC SCI053000 Physics / Optics & Light
To conduct a global study of atmospheric phenomena, it is important to conduct observations in different regions of the world. To do this, it is necessary to develop global observation networks. The GAONet network is an example of the development of a global infrastructure for studying climate change and the environment. The V.E. Zuev Institute of Atmospheric Optics has become part of the GAONet network and is actively developing an atmospheric observation point in Tomsk. This article presents the first experimental results.
atmospheric phenomena, climate, atmospheric profiler, optical cloud fraction monitor, optical precipitation monitor
1. A European Aerosol Research Lidar Network to Establish an Aerosol Climatology: EARLINET [Elektronnyy resurs] https://www.earlinet.eu/, [web-sayt] – rezhim dostupa: svobodnyy, (data obrascheniya 10.06.2025).
2. The Latin America Lidar Network (LALINET a.k.a. ALINE) [Elektronnyy resurs] http://www.lalinet.org/, [web-sayt] – rezhim dostupa: svobodnyy, (data obrascheniya 10.06.2025).
3. Network for the Detection of Atmospheric Composition Change (NDACC) [Elektronnyy resurs] https://ndacc.larc.nasa.gov, [web-sayt] – rezhim dostupa: svobodnyy, (data obrascheniya 10.06.2025).
4. Wang Z., Liu D., Wang Y. Research Progress of ANSO Atmospheric Observation Network and Initiative of the Global Aerosol-Cloud -Precipitation Observation Network (GAONet) Plan // AERSS Annual Meeting 2023, 16-19 September 2023, Wuhan, China. Conference Manual. P. 34.
5. Astafurov V.G., Skorokhodov A.V., Kur’yanovich K.V. and Mitrofanenko Ya.K. Parameters of different cloud types over the natural zones of Western Siberia according to MODIS satellite data // Atmospheric and Oceanic Optics. 2020. V. 33. No. 05. P. 512–518. DOI:https://doi.org/10.1134/S1024856020050036.
6. Russkova T.V., Skorohodov A.V. Ocenka primenimosti neyronnoy seti dlya vosstanovleniya opticheskoy tolschiny i effektivnogo radiusa kapel' odnosloynoy gorizontal'no neodnorodnoy oblachnosti // Optika atmosfery i okeana. 2024. T. 37. № 11. S. 930–938. DOI:https://doi.org/10.15372/AOO20241105.
7. Zhuravleva T.B. Simulation of brightness fields of solar radiation in the presence of optically anisotropic ice-crystal clouds: algorithm and test results // Atmospheric and Oceanic Optics. 2021. V. 34. No. 02. P. 140–147. DOI:https://doi.org/10.1134/S1024856021020135.
8. Sato K., Okamoto H., Nishizawa T., Jin Y., Nakajima T.Y., Wang M., Satoh M., et al. JAXA Level 2 cloud and precipitation microphysics retrievals based on EarthCARE radar, lidar, and imager: the CPR_CLP, AC_CLP, and ACM_CLP products // Atmospheric Measurement Techniques. 2025. V. 18. P. 1325–1338. DOI: /10.5194/amt-18-1325-2025.
9. Matvienko G.G., Babushkin P.A., Bobrovnikov S.M., Borovoi A.G., Bochkovskii D.A., Galileiskii V.P., Grishin A.I., Dolgii S.I., Elizarov A.I., Kokarev D.V., Konoshonkin A.V., Kryuchkov A.V., Kustova N.V., Nevzorov A.V., Marichev V.N., Morozov A.M., Oshlakov V.K., Romanovskii O.A., Sukhanov A.Ya., Trifonov D.A., Yakovlev S.V., Sadovnikov S.A., Nevzorov A.A. and Kharchenko O.V. Laser and Optical Sounding of the Atmosphere // Atmospheric and Oceanic Optics. 2020. V. 33. No. 01. P. 51–68. DOI:https://doi.org/10.1134/S102485602001008X.
10. Bocharnikov N.V., Brylev G.B., Kuznecova L.I. i dr. Avtomatizirovannye meteorologicheskie radiolokacionnye kompleksy «Meteoyacheyka» / Pod. red. A.S. Solonina. SPb.: – Gidrometeoizdat, – 2007. – 246 s.
11. Razrabotka metodov, algoritmov i tehnologiy postroeniya avtomatizirovannyh sistem sbora i obrabotki sputnikovyh dannyh [Elektronnyy resurs] http://smiswww.iki.rssi.ru/default.aspx?page=332, [web-sayt] – rezhim dostupa: svobodnyy, (data obrascheniya 10.06.2025).
12. Kokhanenko G.P., Balin Yu.S., Borovoi A.G. and Novoselov M.M. Studies of the Orientation of Crystalline Particles in Ice Clouds by a Scanning Lidar // Atmospheric and Oceanic Optics. 2022. V. 35. No. 05. P. 509–516. DOI:https://doi.org/10.1134/S1024856022050141.
13. Kustova N., Konoshonkin A., Kokhanenko G., Wang Z., Shishko V., Timofeev D., Borovoi A. Lidar backscatter simulation for angular scanning of cirrus clouds with quasi-horizontally oriented ice crystals // Optics Letters. 2022. V. 47. No. 15. P. 3648-3651. DOI:https://doi.org/10.1364/OL.463282.
14. Trigub M.V., Gembukh P.I., Vasnev N.A., Shiyanov D.V. Laser monitor for simultaneous imaging in the VIS and Near-IR spectral regions // Atmospheric and Oceanic Optics. 2023. V. 36. No. 4. P. 415–420. DOI:https://doi.org/10.1134/S1024856023040176.
15. Sadovnikov S.A., Kravcova N.S., Gerasimova M.P., Arshinov M.Yu., Yakovlev S.V. Lidarnaya sistema dlya izmereniya soderzhaniya uglekislogo gaza v gorodskih usloviyah // Optika atmosfery i okeana. 2025. T. 38. № 05. S. 406–411. DOI:https://doi.org/10.15372/AOO20250511.
16. He Q., Li J., Zhao T., Zhang H., Meng, L. Observing a dust aerosol layer at a height of 3–4 km above the ground on the southern margin of the Tarim Basin // Atmospheric Environment. 2024. V. 318. P. 120236. DOI:https://doi.org/10.1016/j.atmosenv.2023.120236.
17. Jee G., Ham Y.B., Choi Y., Kim E., Lee C., Kwon H., Trondsen T.S., Kim J.E., Kim J.H. Observations of the Aurora by Visible All-Sky Camera at Jang Bogo Station, Antarctica // J. Astron. Space Sci. 2021. V. 38. No. 4. P. 203–215. DOI:https://doi.org/10.5140/JASS.2021.38.4.203.
18. Barentine J.C. Night sky brightness measurement, quality assessment and monitoring // Nature Astronomy. 2022. V. 6. No. 10. P. 1120–1132. DOI:https://doi.org/10.1038/s41550-022-01756-2.
19. Xie W., Wang Y., Xia Y., Gao Z., Liu D. Angular calibration of visible and infrared binocular All-sky-view cameras using sun positions // Remote Sensing. 2021. V. 13. No. 13. P. 2455. DOI:https://doi.org/10.3390/rs13132455.
20. Kokarev D.V., Galileyskiy V.P., Morozov A.M., Elizarov A.I. Ustroystvo nablyudeniya opticheskogo sostoyaniya neba v predelah vidimoy polusfery. Patent na poleznuyu model' RU 191582 U1, 13.08.2019. Zayavka № 2019107577 ot 18.03.2019.
21. Long C.N., Slater D.W., Tooman T.P. Total sky imager model 880 status and testing results. – Richland, WA, USA: Pacific Northwest National Laboratory, – 2001. – 36 p. DOI:https://doi.org/10.2172/1020735.
22. Dev S., Savoy F.M., Lee Y.H., Winkler S. Design of low-cost, compact and weather-proof whole sky imagers for High-Dynamic-Range captures // 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 2015. P. 5359–5362. DOI:https://doi.org/10.1109/IGARSS.2015.7327046.