Institut dinamiki sistem i teorii upravleniya
UDC 543.42
CSCSTI 29.31
Russian Classification of Professions by Education 03.03.02
Russian Library and Bibliographic Classification 223
Russian Trade and Bibliographic Classification 6135
BISAC TEC019000 Lasers & Photonics
The work is devoted to the development of an integrated approach to the analysis of the presence of harmful impurities in the atmospheric air. This approach involves: 1) using the measurement results of terahertz absorption spectra of air containing harmful impurities; 2) creating and using a neural network to analyze the data obtained. Sets of model absorption spectra of a gas mixture with different qualitative and quantitative compositions are generated to train the neural network. The application of a neural network to model sets of spectra demonstrated the identification of six gas components with concentrations up to 0.01 ppm. The neural network has achieved 90-95% accuracy in gas detection. A series of experiments were conducted for real gases, showing the sensitivity of the THz spectroscopy method to low concentrations of gases in atmosphere.
teragercovaya spektroskopiya, neyroseti, gazovyy analiz
1. Bassous N.J., et al. Significance of various sensing mechanisms for detecting local and atmospheric greenhouse gases: A review// Adv. Sensor Res. 2024. T. 3. P.2300094.
2. Dong M., et al. Development and measurements of a mid-infrared multi-gas sensor system for CO, CO2 and CH4 detection// Sensors. 2017. T. 17. P.2221.
3. Vaks V. L. et al. High resolution terahertz spectroscopy for analytical applications //Physics-Uspekhi. 2020. T. 63. №. 7. S. 708.
4. Vysokotochnaya rezonatornaya spektroskopiya atmosfernyh gazov v millimetrovom i submillimetrovom diapazonah dlin voln. / M.Yu. Tret'yakov ; Nizhniy Novgorod IPF RAN, 2016. 320s.
5. Nazarov M.M., et al. // Quantum Electron. 2008. V. 38. № 7. P. 647.
6. Wietzke S., et al. Terahertz spectroscopy on polymers: A review of morphological studies // Journal of Molecular Structure. 2011. V. 1006. P 41–51
7. Eliet, S., Cuisset, A., Guinet, M., Hindle, F., Mouret, G., Bocquet, R., & Demaison, J. (2012). Rotational spectrum of formaldehyde reinvestigated using a photomixing THz synthesizer. Journal of Molecular Spectroscopy, 279, 12-15.
8. LeCun Y., Bengio Y., Hinton G. Deep learning// Nature. 2015. V.521(7553). P. 436-444.
9. Woo S., et al.Park J., Lee J. Y., & Kweon, I. S. Cbam: Convolutional block attention module//Proc. of the European conference on computer vision (ECCV). 2018. P. 3–19
10. Gordon I.E., Rothman L.S., et al. The HITRAN2020 molecular spectroscopic database// J. Quant. Spectrosc. Radiat. Transfer. 2022. V.277. P.107949
11. Mihaylenko S.N., Babikov Yu.L., Golovko V.F. Informacionno-vychislitel'naya sistema "Spektroskopiya atmosfernyh gazov". Struktura i osnovnye funkcii // Optika atmosfery i okeana. 2005. T. 18. № 09. S. 765-776.