Application of machine learning methods to analyze the presence of harmful impurities in the atmosphere based on spectral data
Abstract and keywords
Abstract (English):
The work is devoted to the development of an integrated approach to the analysis of the presence of harmful impurities in the atmospheric air. This approach involves: 1) using the measurement results of terahertz absorption spectra of air containing harmful impurities; 2) creating and using a neural network to analyze the data obtained. Sets of model absorption spectra of a gas mixture with different qualitative and quantitative compositions are generated to train the neural network. The application of a neural network to model sets of spectra demonstrated the identification of six gas components with concentrations up to 0.01 ppm. The neural network has achieved 90-95% accuracy in gas detection. A series of experiments were conducted for real gases, showing the sensitivity of the THz spectroscopy method to low concentrations of gases in atmosphere.

Keywords:
teragercovaya spektroskopiya, neyroseti, gazovyy analiz
Text
Text (PDF): Read Download
References

1. Bassous N.J., et al. Significance of various sensing mechanisms for detecting local and atmospheric greenhouse gases: A review// Adv. Sensor Res. 2024. T. 3. P.2300094.

2. Dong M., et al. Development and measurements of a mid-infrared multi-gas sensor system for CO, CO2 and CH4 detection// Sensors. 2017. T. 17. P.2221.

3. Vaks V. L. et al. High resolution terahertz spectroscopy for analytical applications //Physics-Uspekhi. 2020. T. 63. №. 7. S. 708.

4. Vysokotochnaya rezonatornaya spektroskopiya atmosfernyh gazov v millimetrovom i submillimetrovom diapazonah dlin voln. / M.Yu. Tret'yakov ; Nizhniy Novgorod IPF RAN, 2016. 320s.

5. Nazarov M.M., et al. // Quantum Electron. 2008. V. 38. № 7. P. 647.

6. Wietzke S., et al. Terahertz spectroscopy on polymers: A review of morphological studies // Journal of Molecular Structure. 2011. V. 1006. P 41–51

7. Eliet, S., Cuisset, A., Guinet, M., Hindle, F., Mouret, G., Bocquet, R., & Demaison, J. (2012). Rotational spectrum of formaldehyde reinvestigated using a photomixing THz synthesizer. Journal of Molecular Spectroscopy, 279, 12-15.

8. LeCun Y., Bengio Y., Hinton G. Deep learning// Nature. 2015. V.521(7553). P. 436-444.

9. Woo S., et al.Park J., Lee J. Y., & Kweon, I. S. Cbam: Convolutional block attention module//Proc. of the European conference on computer vision (ECCV). 2018. P. 3–19

10. Gordon I.E., Rothman L.S., et al. The HITRAN2020 molecular spectroscopic database// J. Quant. Spectrosc. Radiat. Transfer. 2022. V.277. P.107949

11. Mihaylenko S.N., Babikov Yu.L., Golovko V.F. Informacionno-vychislitel'naya sistema "Spektroskopiya atmosfernyh gazov". Struktura i osnovnye funkcii // Optika atmosfery i okeana. 2005. T. 18. № 09. S. 765-776.

Login or Create
* Forgot password?