UDC 535.8
CSCSTI 29.31
Russian Classification of Professions by Education 03.03.02
Russian Library and Bibliographic Classification 223
Russian Trade and Bibliographic Classification 613
BISAC SCI053000 Physics / Optics & Light
Convective air motions in the neighborhood of linear elongated heat sources of various configurations are investigated by numerically solving the Navier-Stokes equations. The situations considered can be observed in specialized rooms of optical systems when air is heated by beams of optical radiation of varying intensity. The convection that occurs due to the heating of the air by radiation, as well as the emerging fields of turbulence, have a significant impact on the operation of recording devices. Consideration of the emerging convective and turbulent phenomena is necessary to predict the correct operation of such devices.
Navier-Stokes equations, turbulence, convection
1. Monin A.S., Yaglom A.M. Statisticheskaya gidromehanika. T. 1. SPb.: Gidrometeoizdat, 1992. 696 s.
2. Mironov V.L. Rasprostranenie lazernogo puchka v turbulentnoy atmosfere. N.: Nauka, 1981. 246 s.
3. Gurvich A.S., Kon A.I., Mironov V.L., Hmelevcov S.S. Lazernoe izluchenie v turbulentnoy atmosfere. M.: Nauka, 1976. 277 s.
4. Zuev V.E., Banah V.A., Pokasov V.V. Atmosfernaya optika. T 5. Optika turbulentnoy atmosfery. L.: Gidrometeoizdat, 1988. 271 s.
5. Vorob'ev V.V. Teplovoe samovozdeystvie lazernogo izlucheniya v atmosfere. M.: Nauka, 1987. 200 s.
6. Konyaev P.A. Chislennoe issledovanie teplovyh iskazheniy kogerentnyh lazernyh puchkov v atmosfere: Dis. kand. fiz.-mat. nauk. Tomsk, 1984. 169 s.
7. Lukin V.P. Atmosfernaya adaptivnaya optika. Novosibirsk: Nauka, 1986. 248 s.
8. Zuev V.E., Krekov G.M. Opticheskie modeli atmosfery. L.: Gidrometeoizdat. 1986. 256 s.
9. Popinet S. Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries // J. Comput. Phys. 2003. V. 190. N 2. P. 572–600.