ESTIMATION OF THE MAIN SIZE OF ATMOSPHERIC ICE CRYSTALS USING THE COLOR RATIO IN LASER SENSING APPLICATION
Abstract and keywords
Abstract (English):
The paper presents the dependences of the spectral ratio on the particle size for four shapes at six wavelengths. The study was conducted using the extended database of light scattering matrices of the IAO SB RAS, on data obtained within the physical optics approximation, for the case of random spatial orientation of particles and single scattering. Several particle shapes, which are typical for ice clouds, were studied at wavelengths of incident radiation from 0.355 to 2.150 μm. The results of this work can be used for interpretation of the lidar signal, in particular, to retrieve the size of atmospheric ice particles.

Keywords:
lidar, light scattering, physical optics approximation
References

1. Baran A.J. From the single-scattering properties of ice crystals to climate prediction: A way forward // Atmore spheric Research 2012. V. 112. P. 45–69.

2. Lohmann U., Gasparini B. A cirrus cloud climate dial? // Science. 2017. V. 357. P. 248-249.

3. Sato K., Okamoto H. Global analysis of height-resolved ice particle categories from spacebornelidar // Geophys. Res. Lett. 2023. V. 50, e2023GL105522.

4. Gil-Díaz C. et al. Geometrical and optical properties of cirrus clouds in Barcelona, Spain: Analysis with the two-way transmittance method of 4 years of lidar measurements // Atmos. Meas. Tech. 2024. V. 17, N 4. P. 1197–1216.

5. Khademi F., Bayat A. Classification of aerosol types using AERONET version 3 data over Kuwait city. Atmospheric Environment // Atmos. Environ. 2021. V. 265. P. 118716.

6. Baars H. et al. The unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET // Atmos. Chem. Phys. 2019. V. 19. P. 15183-15198.

7. Nishizawa T., Sugimoto N., Matsui I., Shimizu A., Higurashi A., Jin Y. The Asian Dust and Aerosol Lidar Observation Network (AD-NET) // EPJ Web of Conferences 2016. V. 119. P. 19001.

8. Guerrero-Rascado J.L. et al. Latin American Lidar Network (LALINET) for aerosol research: Diagnosis on network instrumentation // J. Atmos. Sol-Terr. Phys. 2016. V. 138-139. P. 112-120.

9. Wehr,T., Kubota T., Tzeremes G., Wallace K., Nakatsuka H., Ohno Y., Koopman R., Rusli S., Kikuchi M., Eisinger M., Tanaka T., Taga M., Deghaye P., Tomita E., Bernaerts D. The EarthCARE mission - science and system overview // Atmos. Meas. Tech. 2023. V. 16(15). P. 3581–3608.

10. Mishchenko M.I., Hovenier J.W., Travis L.D. Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications. San Diego: Academic Press, 1999. 690 pp.

11. Timofeev D.N., Konoshonkin A.V., Kustova N.V., Shishko V.A., Borovoy A.G. Ocenka vliyaniya pogloscheniya na rasseyanie sveta na atmosfernyh ledyanyh chasticah dlya dlin voln, harakternyh dlya zadach lazernogo zondirovaniya atmosfery. // Optika atmosf. i okeana. 2019. T. 32. № 05. S. 381–385.

12. Shangguan M., Xia H., Dou X., Qiu J., Yu C. Development of Multifunction Micro-Pulse Lidar at 1.5 Micrometer // EPJ Web of Conferences 2020. V. 7010. P. 237.

13. Refaat T.F., Petros M., Antill C.W., Singh U.N., Choi Y., Plant J.V., Digangi J.P. Airborne testing of 2-µm pulsed IPDA Lidar for active remote sensing of atmospheric carbon dioxide // Atmoshpere 2021. V. 12(2). P. 412.

14. Timofeev D.N., Konoshonkin A.V. Kustova N.V., Borovoi A.G., Kozodoev A.V. Calculation of backscattering matrix for ice particles of cirrus clouds for 1.55 and 2 micron lidars within the physical optics approximation // Proc. SPIE. 2020. V. 11531. CID: 11531OS.

15. Tkachev I.V., Timofeev D.N., Kustova N.V., Konoshonkin A.V. Bank dannyh matric obratnogo rasseyaniya sveta na atmosfernyh ledyanyh kristallah razmerami 10–100 mkm dlya interpretacii dannyh lazernogo zondirovaniya // Optika atmosf. i okeana. 2021. T. 34. № 03. S. 199–206.

16. ScIce: database for optical properties of realistic ice particles of cirrus clouds, [Elektronnyy resurs]. URL: http://scice.konoshonkin.com (data obrascheniya 19.03.2025).

17. Borovoi A., Konoshonkin A., Kustova N. The physical-optics approximation and its application to light backscattering by hexagonal ice crystals // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 181–189.

18. Konoshonkin A.V., Kustova N.V., Borovoi A.G. Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation // J. Quant. Spectrosc. Radiat. Transfer 2015. V. 164. P. 175–183.

19. King M.D., Kaufman Y.J., Tanré D., Nakajima T. Remote sensing of tropospheric aerosols from space: Past, present, and future // Bulletin of the American Meteorological Society 1999. V. 80(11). P. 2229-2259.

20. Ackerman S.A., Strabala K.I., Menzel W.P., Frey R.A., Moeller C.C., Gumley L.E. Discriminating clear sky from clouds with MODIS // J. Geophys. Res. 1998. V. 103(D24). P. 32141–32157.

21. Warren S.G., Brandt R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation // J. Geophys. Res 2008. V. D14220. P. 113

Login or Create
* Forgot password?