Nacional'nyy issledovatel'skiy Tomskiy gosudarstvennyy universitet
UDC 535.8
CSCSTI 29.31
Russian Classification of Professions by Education 03.03.02
Russian Library and Bibliographic Classification 223
Russian Trade and Bibliographic Classification 613
BISAK SCI053000 Physics / Optics & Light
This report introduces ScIce-2025 – a database of light backscattering matrices for randomly oriented ice crystal particles of cirrus clouds. It contains the full spectrum of observed particle sizes (0.1–10,000 μm) and was obtained for three key lidar wavelengths (0.355, 0.532, and 1.064 μm). The database was generated using three fundamentally different light-scattering approaches: a rigorous numerical method, a physical optics method, and a geometric optics approximation. ScIce-2025 provides critical support for developing advanced lidar data interpretation algorithms, enabling more accurate analysis of cirrus clouds in both ground-based and space-based lidar observations.
remote sensing, database, cirrus clouds
1. Liou K.-N. Influence of cirrus clouds on the weather and climate process: a global perspective // Mon. Weather Rev. 1986. V. 114. P. 1167–1199. DOI:https://doi.org/10.1175/1520-0493(1986)114%3C1167:IOCCOW%3E2.0.CO;2.
2. Climate change 2007 – The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2007. 996 r.
3. Defresne J.-L. and Bony S. An assessment of the primary source of spread of global warming estimates from coupled atmosphere-ocean models // J. Clim. 2008. V. 21. No. 19. P. 5135–5144. DOI:https://doi.org/10.1175/2008JCLI2239.1.
4. Tinel C., Testud J., Pelon J., Hogan R.J., Protat A., Delanoë J., Bouniol D. The retrieval of ice-cloud properties from cloud radar and lidar synergy // J. Appl. Meteor. Climatol. 2005. V. 44. No. 6. P. 860–875. DOI:https://doi.org/10.1175/JAM2229.1.
5. Kokhanenko G.P., Balin Yu.S., Borovoi A.G., Novoselov M.M. Studies of the orientation of crystalline particles in ice clouds by a scanning lidar // Atmos. Ocean. Opt. 2022. V. 35. No. 5. P. 509–516. DOI:https://doi.org/10.1134/S1024856022050141.
6. Samoilova S.V., Kokhanenko G.P., Balin Yu.S. Advantages of an additional Raman channel in laser sounding at wavelengths of 355–1064 nm for retrieving microphysical parameters of atmospheric aerosol // Atmos. Ocean. Opt. 2023. V. 36. No. 6. P. 701–715. DOI:https://doi.org/10.1134/S1024856023060179.
7. Astafurov V.G., Skorokhodov A.V., Kur’yanovich K.V., Mitrofanenko Ya.K. Parameters of different cloud types over the natural zones of western Siberia according to MODIS satellite data // Atmos. Ocean. Opt. 2020. V. 33. No. 5. P. 512–518. DOI:https://doi.org/10.1134/S1024856020050036.
8. Katagiri S., Hayasaka T., Shimizu A., Matsui I., Nishizawa T., Sugimoto N., Takamura T. Long term analysis of cirrus clouds' effects on shortwave and longwave radiation derived from data acquired by ground-based and satellite-borne observations // AIP Conf. Proc. 2013. V. 1531. No. 1. P. 492–495. DOI:https://doi.org/10.1063/1.4804814.
9. Sassen K., Kayetha V.K., and Zhu J. Ice cloud depolarization for nadir and off-nadir CALIPSO measurements // Geophys. Res. Lett. 2012. V. 39. P. L20805. DOI:https://doi.org/10.1029/2012GL053116.
10. Wehr T., Kubota T., Tzeremes G., Wallace K., Nakatsuka H., Ohno Y., Koopman R., Rusli S., Kikuchi M., Eisinger M., Tanaka T., Taga M., Deghaye P., Tomita E., Bernaerts D. The EarthCARE mission – science and system overview // Atmos. Meas. Tech. 2023. V. 16. No. 15. P. 3581–3608. DOI:https://doi.org/10.5194/amt-16-3581-2023.
11. Sato K., Okamoto H., Nishizawa T., Jin Y., Nakajima T. Y., Wang M., Satoh M., Roh W., Ishimoto H., Kudo R. JAXA Level 2 cloud and precipitation microphysics retrievals based on EarthCARE radar, lidar, and imager: the CPR_CLP, AC_CLP, and ACM_CLP products // Atmos. Meas. Tech. 2025. V. 18. No. 5. P. 1325–1338. DOI:https://doi.org/10.5194/amt-18-1325-2025.
12. Yang P., Bi L., Baum B., Lion K-N., Kattawar G., Mishchenko M., Cole B. Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm // J. Atmos. Sci. 2013. V. 70. P. 330–347. DOI:https://doi.org/10.1175/JAS-D-12-039.1.
13. Bi L., Yang P. Improved ice particle optical property simulations in the ultraviolet to far-infrared regime // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 189. P. 228–237. DOI:https://doi.org/10.1016/j.jqsrt.2016.12.007.
14. The ScIce-2025 database of light backscattering matrices calculated for five shapes of ice crystals of cirrus clouds: hexagonal columns and plates, droxtals and bullets, arbitrary particles of irregular shapes (four samples). [Elektronnyy resurs]. URL: https://ftp.iao.ru/pub/GWDT/Physical_optics/Backscattering/Data_bank_2025 (data obrascheniya 22 aprelya 2025).
15. Tkachev I.V., Timofeev D.N., Kustova N.V., Konoshonkin A.V. Bank dannyh matric obratnogo rasseyaniya sveta na atmosfernyh ledyanyh kristallah razmerami 10–100 mkm dlya interpretacii dannyh lazernogo zondirovaniya // Optika atmosf. i okeana. 2021. T. 34. № 3. S. 199–206. DOI:https://doi.org/10.15372/AOO20210306.
16. Shishko V.A., Tkachev I.V., Timofeev D.N., Kustova N.V., Konoshonkin A.V. Opticheskie harakteristiki ledyanyh atmosfernyh kristallov proizvol'noy formy s raznym kolichestvom graney dlya zadach lazernogo zondirovaniya // Optika atmosf. i okeana. 2024. T. 37. № 10. S. 868–873. DOI:https://doi.org/10.15372/AOO20241009.
17. Warren S.G., Brandt R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation // J. Geophys. Res. 2008. V. D14220. P. 113. DOI:https://doi.org/10.1029/2007JD009744.
18. Born M., Vol'f E. Osnovy optiki. M: Nauka, 1973. 719 s.
19. Mishchenko M.I., Hovenier J.W., Travis L.D. Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications. San Diego: Academic Press, 1999. 690 pp.
20. Yurkin M.A., Hoekstra A.G. The discrete-dipole-approximation code ADDA: capabilities and known limitations // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. No. 13. P. 2234–2247. DOI:https://doi.org/10.1016/j.jqsrt.2011.01.031.
21. Borovoi A., Konoshonkin A., Kustova N. The physical-optics approximation and its application to light backscattering by hexagonal ice crystals // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 181–189. DOI:https://doi.org/10.1016/j.jqsrt.2014.04.030.
22. Sun B., Yang P., Kattawar G. W., Zhang X. Physical-geometric optics method for large size faceted particles // Opt. Exp. 2017. V. 25. No. 20. P. 24044–24060. DOI:https://doi.org/10.1364/oe.25.024044.
23. Heymsfield A.J., Schmitt C., Bansemer A. Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86°C // J. Atmos. Sci. 2013. V. 70. P. 4123–4154. DOI:https://doi.org/10.1175/jas-d-12-0124.1.
24. Konoshonkin A.V., Borovoi A.G., Kustova N.V., Okamoto H., Ishimoto H., Grynko Y., Förstner J. Light scattering by ice crystals of cirrus clouds: from exact numerical methods to physical-optics arrroximation // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 195. P. 132–140. DOI:https://doi.org/10.1016/j.jqsrt.2016.12.024.
25. Mitchell D.L. Parameterization of the Mie extinction and absorption coefficients for water clouds // J. Atmos. Sci. 2000. V. 57. P. 1311–1326. DOI:https://doi.org/10.1175/1520-0469(2000)057<1311:POTMEA>2.0.CO;2.