Institut solnechno zemnoy fiziki SO RAN
Tomsk, Russian Federation
Irkutsk, Russian Federation
Sibirskiy regional'nyy nauchno-issledovatel'skiy gidrometeorologicheskiy institut
Tomsk, Russian Federation
Tomskiy gosudarstvennyy universitet
Tomsk, Russian Federation
Russian Federation
UDC 551.506.7
CSCSTI 37.21
Russian Classification of Professions by Education 05.02.03
Russian Library and Bibliographic Classification 260
Russian Trade and Bibliographic Classification 6326
BISAK SCI042000 Earth Sciences / Meteorology & Climatology
The winter of 2024–2025 was marked by the unusual stability of the stratospheric polar vortex, driven by a combination of factors. This persistence reflected both weakened upward wave propagation from the troposphere and stratospheric conditions—intense zonal winds acted as a barrier to vertical wave activity. Lidar measurements conducted near Akademgorodok Tomsk in February recorded exceptionally low temperatures at altitudes of 15–20 km, along with the presence of polar stratospheric clouds at these heights, highlighting the uniqueness of the atmospheric conditions. From November to January, weak Rossby wave breaking was observed in the stratosphere, while zonal circulation dominated the Eurasian troposphere. The final weakening of the SPV and the associated sudden stratospheric warming occurred in early March, triggering a sharp reorganization of stratospheric circulation.
stratospheric polar vortex, Rossby waves, stratospheric warming
1. Hersbach H. et al. The ERA5 Global Reanalysis // Q. J. R. Meteorol. Soc. 2020. V. 146, P. 1999–2049
2. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L. The NCEP/NCAR 40-Year Reanalysis Project // Bulletin of the American Meteorological Society. 1996. V. 77. N 3. P. 437–471.
3. Plumb R.A. On the Three-Dimensional Propagation of Stationary Waves // Journal of the Atmospheric Sciences. 1985. Vol. 42, № 3. P. 217–229.
4. Antohina O. Yu., Gochakov A. V., Zorkal'ceva O. S., Antohin P. N., Krupchatnikov V. N. Oprokidyvanie voln Rossbi v stratosfere. Chast' I. Klimatologiya i dolgovremennaya izmenchivost' // Optika atmosfery i okeana. 2024. T. 37. № 05. S. 415–422. https://DOI:https://doi.org/10.15372/AOO20240509
5. Antohina O. Yu., Gochakov A. V., Zorkal'ceva O. S., Antohin P. N., Krupchatnikov V. N., Artamonov M.F. Oprokidyvanie voln Rossbi v stratosfere. Chast' II. Usloviya vozniknoveniya vnezapnyh stratosfernyh potepleniy // Optika atmosfery i okeana, 2025, №5 v pechati
6. Bobrovnikov S.M., Zharkov V.I., Zaycev N.G., Trifonov D.A. Primenenie kombinirovannogo metoda fotoregistracii v lidarnyh izmereniyah temperatury atmosfery na glavnom zerkale Sibirskoy lidarnoy stancii. // Optika atmosfery i okeana. 2023. T. 36. № 10. S. 839–845; DOI:https://doi.org/10.15372/AOO20231008;
7. Balugin N. V., Marichev V. N., Yushkov V. A., Fomin B. A., Bochkovskiy D. A. Aerozol'noe zondirovanie troposfery i stratosfery s pomosch'yu lidarnyh i aerologicheskih tehnologiy. // Optika atmosfery i okeana. 2024. T. 37. № 02. S. 99–104. DOI:https://doi.org/10.15372/AOO20240201.
8. Antohina O. Yu., Antohin P.N., Belan B.D., Zorkal'ceva O.S., Gochakov A.V., Artamonov M.F. Sobytiynyy analiz cirkulyacionnyh anomaliy v fevrale 2024: troposferno-stratosfernoe vzaimodeystvie i formirovanie rezhima “Teplaya Arktika – Holodnaya Evraziya” // Izvestiya RAN. Fizika atmosfery i okeana, 2025.
9. Zorkal'ceva O. S., Antohina O. Yu., Antohin P. N. Dolgovremennaya izmenchivost' parametrov vnezapnyh stratosfernyh potepleniy po dannym reanaliza ERA5 // Optika atmosfery i okeana. 2023. T. 36. № 03. S. 200–208