UDC 535.8
CSCSTI 29.31
Russian Classification of Professions by Education 03.03.02
Russian Library and Bibliographic Classification 223
Russian Trade and Bibliographic Classification 613
BISAC SCI053000 Physics / Optics & Light
An experiment using turbulent and Doppler wind lidars was conducted in Tomsk from December 2024 to April 2025. One wind lidar operated at zenith, and the other two, together with turbulent lidars, performed sounding at a small angle in the north and northwest directions. The purpose of the experiment was to study the capabilities of the equipment for studying the structure and dynamics of mesoscale eddies in the atmospheric boundary layer. Observations were made in the cold season, when the temperature stratification of the boundary layer is stable. The main attention was paid to atmospheric waves and organized (coherent) structures. The readings of the turbulent lidars were compared with the data of wind lidars, a temperature profiler, and meteorological parameters.
atmospheric boundary layer, remote sensing, lidar
1. Dymnikov V.P. , E.M. Volodin, V.Ya. Galin, A.V. Glazunov, A.S. Gricun, N.A. Dianskiy, V.N. Lykosov. Klimat i ego izmeneniya: matematicheskaya teoriya i chislennoe modelirovanie.// Sibirskiy zhurnal vychislitel'noy matematiki. 2003. T. 6 № 4. S. 347-379..
2. Smaliho I. N., Banah V. A., Razenkov I. A., Suharev A. A., Falic A. V., Sherstobitov A. M. Sravnenie rezul'tatov sovmestnyh izmereniy skorosti vetra kogerentnymi doplerovskimi lidarami Stream Line i LRV. // Optika atmosfery i okeana. 2022. T. 35. № 10. S. 826–835. DOI:https://doi.org/10.15372/AOO20221005.
3. Razenkov I. A. Analiz tehnicheskih resheniy pri proektirovanii turbulentnogo lidara. // Optika atmosfery i okeana. 2022. T. 35. № 09. S. 766–776. DOI:https://doi.org/10.15372/AOO20220910.
4. Monin A.S., Obuhov A.M. Osnovnye zakonomernosti turbulentnogo obmena v pripoverhnostnom sloe // Tr. Instituta geofiziki AN SSSR. 1954. No. 24. S. 163-187.