Tomskiy gosudarstvennyy universitet
Tomskiy nauchnyy centr SO RAN
Tomskiy gosudarstvennyy universitet sistem upravleniya i radioelektroniki
UDC 535
CSCSTI 29.31
Russian Classification of Professions by Education 03.03.02
Russian Library and Bibliographic Classification 223
Russian Trade and Bibliographic Classification 613
BISAK SCI053000 Physics / Optics & Light
Results of investigations of the temporal, spectral, and energetic characteristics of the acoustic pulses generated during laser breakdown on a solid aerosol particle are systematized. It is shown that the acoustic pulse has the form of a shock N-wave, the amplitude of the negative half-period of which decreases with increasing size of the solid aerosol particle, and the pulse duration at half maximum increases compared to the positive half-period. When the laser energy density QL exceeds 10 J/cm2, the acoustic energy Wac increases exponentially with QL. The rate of increase of Wac is slowed down due to the threshold character of laser breakdown initiation and evolution.
laser breakdown, acoustic pulses, aerosol particle
1. Zondirovanie fiziko-himicheskih parametrov atmosfery s ispol'zovaniem moschnyh lazerov (Sbornik nauchnyh statey) / Pod red. V.E. Zueva. Tomsk: Institut optiki atmosfery SO RAN, 1979. 221 s.
2. Kopytin Yu.D., Protasevich E.T., Chistyakova L.K., Shishkovskiy V.I. Vozdeystvie lazernogo i VCh-izlucheniy na vozdushnuyu sredu. Novosibirsk: Nauka, 1992. 189 s.
3. Opticheskiy razryad v aerozolyah / Red. V.E. Zuev. Novosibirsk: Nauka, Sibirskoe otdelenie, 1990. 157 c.
4. Bochkarev N.N. Prikladnaya atmosfernaya optoakustika moschnyh lazernyh puchkov. Tomsk: Izd-vo Tomskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta. 2008. 318 s.
5. Hosoya, N., Nogata, M., Kajiwara, I., et al. Acoustic testing in a very small space based on a point sound source generated by laser-induced breakdown: Stabilization of plasma formation // J. Sound Vibr. 2013. V. 332. P. 4572–4583.
6. Kaleris, K., Orphanos, Y., Bakarezos, M., et al. Experimental and analytical evaluation of the acoustic radiation of femtosecond laser plasma filament sound sources in air // J. Acoust. Soc. Amer. 2019. P. EL212–EL218.
7. Qin, Q., Attenborough, K. Characteristics and application of laser-generated acoustic shock waves in air // Appl. Acoust. 2004. V. 65. № 4. P. 325–340.
8. Kaleris, K., Orphanos, Y., Petrakis, S., et al. Laser-plasma sound sources in atmospheric air: A systematic experimental study // J. Sound Vibr. 2024. V. 570. № 3. Article 118000.
9. Shamanaev S.V., Shamanaeva L.G. Analiz spektrov akusticheskih signalov, generiruemyh pri rasprostranenii moschnogo impul'snogo lazernogo izlucheniya v atmosfere. 1. Spektry lokal'nyh plazmennyh ochagov // Izvestiya vuzov. Fizika. 2005. № 11. S. 74–80.
10. Krasnenko N.P., Shamanaev S.V., Shamanaeva L.G. Generaciya zvuka v atmosfere pod deystviem moschnyh mili- i mikrosekundnyh lazernyh impul'sov // Izvestiya vuzov. Fizika. 2009. T. 52. № 9. S. 51–62.
11. Dzhefris G., Svirls B. Metody matematicheskoy fiziki. Moskva: Mir, 1970. 344 s.