UDC 53
CSCSTI 29.00
Russian Classification of Professions by Education 05.00.00
Russian Library and Bibliographic Classification 26
Russian Trade and Bibliographic Classification 63
BISAC SCI053000 Physics / Optics & Light
A “LOZA-S” system, Tomsk, provides the extinction σ and backscattering β coefficients at the wavelengths within λ = 355–1064 nm with a height step of 12 m. The set of parameters (3β + 2σ) allows for a separate fraction-wise, simultaneous retrieval of the refractive index m = m real + m image *i and the particle size distribution function U (r) = U fine (r) + U coarse (r), r is the particle radius. The reconstruction errors of m fine + U fine (r) / m coarse + U coarse (r) and corresponding albedo are studied, when m fine < and/or > m coarse.
remote sensing, optical parameters, inverse problem, microphysical characteristics
1. Hansen J.E., Travis L.D. Light scattering in planetary atmospheres // Space Sci. Rev. 1974. V. 16. P. 527–610. https:// doi.org/ 10.1007/ BF00168069.
2. Haywood J., Boucher O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review // Rev. Geophys. 2000. V. 38. P. 513–543. https:// doi.org/ 10.1029/ 1999RG000078.
3. Seinfeld J., Pandis S. Chemistry and Physics: from Air Pollution to Climate Change // New York: John Wiley & Sons Inc. 2016. Available at: https: // books.google.co.uk/books?id=n_RmCgAAQBAJ.
4. Twomey S. Pollution and the planetary albedo // Atmos. Environ.1974. V. 8. P. 1251–1256.
5. Loeb N.G., Su W. Direct Aerosol Radiative Forcing Uncertainty Based on a Radiative Perturbation Analysis // J. Climate 2010. V. 23. P. 5288–5293. https:// doi.org/ 10.1175/ 2010JCLI3543.1.
6. Panchenko M.V., Zhuravleva T.B.Vertical profile of optical and microphysical characteristics of tropospheric aerosol from aircraft measurements // In: Kokhanovsky A. ed. Light Scattering Rev. 2015. P. 199–234. https:// doi.org/ 10.1007/ 978-3-662-46762-6.
7. Lacagnina C., Hasekamp O.P., Bian H., Curci G., Myhre G., van Noije T., et al. Aerosol single-scattering albedo over the global oceans: Comparing PARASOL retrievals with AERONET, OMI, and Aero-Com models estimates // J. Geophys. Res.-Atmos. 2015. V. 120. P. 9814–9836. https:// doi.org/ 10.1002/ 2015JD023501.
8. Quaas J., Arola A., Cairns B., Christensen M., Deneke H., Ekman A.M.L., et al. Constraining the Twomey effect from satellite observations: issues and perspectives // Atmos. Chem. Phys. 2020. V. 20. P. 15079–15099. https:// doi.org/ 10.5194/ acp-20-15079-2020.
9. Pérez-Ramírez D., Whiteman D.N., Veselovskii I., Colarco P., Korenski M., da Silva A. Retrievals of aerosol single-scattering albedo by multiwavelength lidar measurements: Evaluations with NASA Langley HSRL-2 during discover-AQ field campaigns // Remote Sens. Environ. 2019. V. 222. P. 144–164. https:// doi.org/ 10.1016/ j.rse.2018.12.022.
10. Pérez-Ramírez D., Whiteman D.N., Veselovskii I., Korenskiy M., Colarco P., da Silva A. Optimized profile retrievals of aerosol microphysical properties from simulated spaceborne multiwavelength lidar // J. Quant. Spectrosc. Ra. 2020. V. 246. P. 106932. https:// doi.org/ 10.1016/ j.jqsrt.2020.106932.
11. Müller D., Chemyakin E., Kolgotin A., Ferrare R.A., Hostetler C.A., Romanov A. Automated, unsupervised inversion of multiwavelength lidar data with TiARA: assessment of retrieval performance of microphysical parameters using simulated data // Appl. Opt. 2019. V. 58. P. 4981–5008. https:// doi.org/ 10.1364/ AO.58.004981.
12. Samoilova S.V., Penner I.E., Kokhanenko G.P., Balin Yu.S. Simultaneous reconstruction of two microphysical aerosol characteristics from the lidar data // J. Quant. Spectrosc. Ra. 2019. V. 222-223. P. 35–44. https:// doi.org/ 10.1016/ j.jqsrt.2018.10.014.
13. Samoilova S.V., Penner I.E., Balin Yu.S. Separate retrieval of microphysical characteristics in aerosol fraction // J. Quant. Spectrosc. Ra. 2022. V. 285. P. 108168. https:// doi.org/ 10.1016/ j.jqsrt.2022.108168.