UDC 535.8
CSCSTI 29.31
Russian Classification of Professions by Education 03.03.02
Russian Library and Bibliographic Classification 223
Russian Trade and Bibliographic Classification 6135
BISAK SCI053000 Physics / Optics & Light
The ergodic theorem for the case of non-stationary random processes is proved. For stationary processes such theorem was proved by Taylor (1921). This result is important for atmospheric turbulence, in which all hydrodynamic elements are non-stationary and have a pronounced diurnal change and annual variation. The proof confirms the ideas of Reynolds (1894), according to which the time averaging interval should be large compared to the characteristic periods of the pulsation field, but small compared to the periods of the averaged field.
atmosphere, turbulence, non-stationary random processes
1. Monin A.S., Yaglom A.M. Statisticheskaya gidromehanika. T.1. M.: Nauka, 1965. 639 S.; T.2. M.: Nauka, 1967, 720 s.
2. Reynolds O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Phil. Trans. Roy. Soc, London, 1894, Vol.186. P.123—161.
3. Taylor G. I. Diffusion by continuous movements, Proc. London Math. Soc.,(2), 1921, Vol.20. P.196—211.
4. Slutsky E. E. (Sluckiy E. E.) Sur les fonctions aleatoires presque periodiques et sur la decomposi-tion des fonctions aleatoires stationnaires en composantes, Actual.Scient. Industr., 1938. N 38, P.33—55.
5. Tatarskiy V.I. Rasprostranenie voln v turbulentnoy atmosfere. M.: Nauka, 1967. 548 s.
6. Gurvich A.S., Kon A.I., Mironov V.L., Hmelevcov S.S. Lazernoe izluchenie v turbulentnoy atmosfere. M.: Nauka, 1976. 277 s.
7. Rytov S.M. Vvedenie v statisticheskuyu radiofiziku. Chast' I. Sluchaynye processy. M.: Nauka, 1976. 496 s.
8. Nosov V.V., Lukin V.P., Nosov E.V., Torgaev A.V. Discrete-uninterrupted averaging in Taylor ergodic theorem // Proc. SPIE. 2006. Vol. 6160. P. 616034 1-15. doihttps://doi.org/10.1117/12.675919.