ИНФОРМАТИВНОСТЬ ОПТИЧЕСКИХ ХАРАКТЕРИСТИК ДЫМОВ СМЕШАННОГО СОСТАВА ПРИ ВОССТАНОВЛЕНИИ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ В РАЗЛИЧНЫХ ДИАПАЗОНАХ ДИСПЕРСНОСТИ

Веретенников В.В.¹, Меньщикова С.С.¹

¹Институт оптики атмосферы им. В.Е. Зуева СО РАН, г. Томск, Россия

e-mail: vvv@iao.ru

Рассмотрена обратная задача определения комплексного показателя преломления (КПП) аэрозольного вещества из измерений характеристик светорассеяния. Представлены результаты численного исследования информативности поляризационных индикатрис рассеяния в дымах смешанного состава при восстановлении КПП с учетом изменчивости в различных диапазонах размеров частиц. Микрофизическая модель дыма была выбрана в соответствии с результатами работы [1] и включала три интервала дисперсности с различными значениями КПП. Определены функции чувствительности поляризационных характеристик дыма к вариациям КПП в различных диапазонах дисперсности. Представлены оценки погрешности восстановления КПП в зависимости от погрешности оптических измерений.

В расчетах полидисперсных оптических характеристик аэрозоля, связанных с решением обратных задач, обычно предполагается неизменность комплексного показателя преломления вещества аэрозольных частиц при изменении их размеров. При этом показатель преломления может рассматриваться в числе неизвестных параметров, подлежащих определению из результатов оптических измерений наряду с функцией распределения аэрозольных частиц по размерам. В реальных аэрозольных средах возможны ситуации, когда значения КПП частиц зависят от их размеров. В частности, химический состав и КПП вещества дымовых аэрозолей варьируют в частицах разного размера в зависимости от вида горючих материалов, режима горения.

Изменчивость КПП аэрозольных частиц в различных диапазонах дисперсности ранее была установлена в результате лабораторных исследований оптических характеристик дымов, которые проводились в Большой аэрозольной камере (БАК) ИОА СО РАН [1]. При смешении продуктов высокотемпературного горения и низкотемпературного пиролиза древесных материалов формировался дымовой аэрозоль, содержащий сильнопоглощающие микродисперсные частицы и умеренно поглощающие частицы среднедисперсного диапазона.

Оптические измерения проводились поляризационным спектронефелометром для пяти углов рассеяния (θ = 15, 45, 110, 135 и 165°) на 4-х длинах волн (λ = 0,46; 0,53; 0,59 и 0,63 мкм) и двух ортогональных состояний поляризации.

В докладе представлены результаты численного исследования информативности поляризационных индикатрис рассеяния $\mu_1(\theta,\lambda), \mu_2(\theta,\lambda)$ в дымах смешанного состава при восстановлении КПП с учетом изменчивости в различных диапазонах дисперсности.

Математической основой исследования служит метод наименьших квадратов (МНК). Предполагается заданной физическая модель, определяющая зависимость поляризационных характеристик от значений КПП, которые рассматриваются в качестве компонентов вектора параметров $x=(x_1,...,x_N)$. Мера расхождения между моделью $\{\mu_1(\theta,\lambda),\mu_2(\theta,\lambda)\}=f_i(\theta,\lambda,x)$ и вектором измерений f_δ , заданным с погрешностью δ , определяется функционалом

$$F(x) = \sum_{i=1}^{M} \left[\frac{f_i(x) - f_{i\delta}}{\sigma_i^2} \right]^2, \tag{1}$$

где $f_{\delta}=f_{0}+\delta$, $f_{0}=f(x_{0})$ — точное значение, соответствующее $x=x_{0}$, σ_{i}^{2} — дисперсии случайных погрешностей измерений δ_{i} . Для рассматриваемой задачи относительную погрешность измерений $\varepsilon=\sigma_{i}$ / f_{i0} можно считать одинаковой для всех θ и λ . В этом случае система нормальных уравнений для функционала F(x) в квадратичном приближении в окрестности $x=x_{0}$ при достаточной малости относительной погрешности ε имеет следующий вид

$$(A^T A)\Delta x = A^T \xi, \tag{2}$$

где $\Delta x = x$ - x_0 - погрешность решения при минимизации F(x); ξ - вектор с компонентами $\xi_i = \varepsilon(\delta_i / \sigma_i)$; $A - M \times N$ -матрица логарифмических производных функций $f_i(x)$ с элементами $\|a_{i,j}\| = \|\partial \ln f_i / \partial x_j\|$, вычисленными в точке $x = x_0$. Из решения системы (2)

$$\Delta x = (A^T A)^{-1} A^T \xi, \tag{3}$$

определяется ковариационная матрица $\overline{\Delta \times \Delta \times^T}$, которая имеет особенно простой вид в случае некоррелированных погрешностей измерений δ_i :

$$\overline{\Delta x \Delta x^T} = \varepsilon^2 (A^T A)^{-1} \tag{4}$$

и является обратной по отношению к информационной матрице $I = (1/\epsilon^2)A^TA$. Диагональные элементы матрицы I^{-1} определяют дисперсии ошибок оцениваемых параметров. В тривиальном случае только одного восстанавливаемого параметра, например x_j , из (4) можно получить следующую оценку средней квадратичной погрешности

$$\sigma_{xj} = \left(\overline{\Delta x_j^2}\right)^{1/2} = \varepsilon / |A_j|, \tag{5}$$

где $|A_j|$ – норма вектора A_j , образованного элементами j-го столбца матрицы A. Величина $|A_j|$ является функцией чувствительности семейства модельных характеристик $\{f_i(\theta,\lambda,x)\}$ к вариациям параметра x_j и характеризует информативность эксперимента относительно x_j .

В случае восстановления двух параметров, x_i и x_j , погрешность σ_{xij} зависит от угла y_{ij} между векторами A_i и A_j :

$$\sigma_{xij} = \frac{\varepsilon}{\left|A_j\left[1-\cos^2(\gamma_{ij})\right]^{1/2}}.$$
 (6)

Выражение (6) совпадает с формулой (5) в случае ортогональности векторов A_i и A_j , когда их скалярное произведение обращается в нуль: $(A_i, A_j) = 0$.

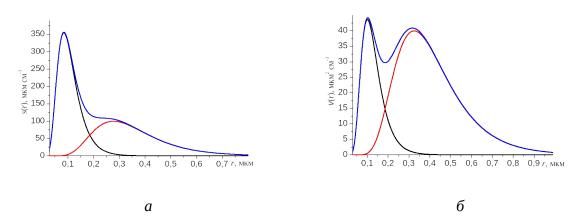


Рис. 1. Модельные функции распределения суммарного геометрического сечения (*a*) и объема (б) частиц по размерам для смешанного дыма

Модель включает три интервала размеров частиц с различными значениями КПП, в соответствии с которыми вектор параметров x был задан в виде $x=(n_1,\kappa_1,n_2,\kappa_2,n_3,\kappa_3)^T$. Модельные значения x_0 , восстановленные в [1] совместно с микроструктурой дыма, представлены в таблице 1 (столбцы 2, 4). Для выбранной модели определялся вектор поляризационных характеристик $f=\{\mu_1(\theta_i,\lambda_j),\mu_2(\theta_i,\lambda_j)\}$ размерности M=40 и рассчитывалась матрица логарифмических производных A.

В столбцах 3 и 5 таблицы 1 приведены значения среднеквадратических погрешностей восстановлении параметров σ_n и σ_κ , определенные по формуле (5) для диагональных элементов матрицы $(A^TA)_{jj}=(9,20;\ 3,11;\ 49,6;\ 180;\ 81,9;\ 1078)$ при относительной погрешности измерений $\varepsilon=0,1$. Для сравнения в таблице 2 представлены погрешности восстановления КПП σ_{xij} (6) для различных пар (x_i,x_j) при $\varepsilon=0,1$, которые превышают значения σ_n и σ_κ из таблицы 1, что обусловлено учетом неортогональности между столбцами A_i и A_j матрицы A.

Таблица 1. Значения КПП $m_0 = n_0 - i \cdot \kappa_0$ для трех интервалов размеров частиц по данным [1] и оценки σ_n , σ_κ (5) для относительной погрешности измерений $\varepsilon = 0,1$

Интервалы	n_0	σ_n	κ_0	σ_{κ}
(I) $0.03 \le r < 0.15 \text{ MKM}$	1.76	0,033	0.47	0,057
(II) $0.15 \le r < 0.30$ MKM	1.61	0,014	0.069	0,007
(III) $0.30 \le r < 1.0 \text{ MKM}$	1.67	0,01	0.054	0,003

Таблица 2. Погрешности восстановления КПП σ_{xij} (6) для различных пар (x_i , x_j) при $\varepsilon = 0.1$

0,033	0,057	0,045	0,053	0,035	0,045
0,098	0,057	0,076	0,074	0,072	0,095
0,019	0,019	0,014	0,03	0,015	0,021
0,012	0,010	0,017	0,0074	0,008	0,012
0,012	0,014	0,011	0,011	0,011	0,015
0,0041	0,005	0,0045	0,005	0,004	0,003

Суммарная дисперсия всех N=6 компонентов вектора x определяется по формуле $\sigma_x^2=\varepsilon^2\sum_{j=1}^N(1/\alpha_j)$, где $\alpha_i=1264,1$; 105,4; 20,90; 7,863; 3,718; 0,3086 — собственные значения матрицы A^TA . Это дает средний вклад от одной координаты вектора x, вносимый в суммарную погрешность восстановления КПП, $\overline{\sigma}_x=\sigma_x/\sqrt{N}=0,78$ ε , что существенно превышает величину погрешностей σ_{xij} (6), которые получены при рассмотрении отдельных пар (x_i, x_j) и представлены в таблице 2 при $\varepsilon=0,1$.

1. *Рахимов Р. Ф., Козлов В.С., Тумаков А.Г., Шмаргунов В.П.* Оптические и микрофизические свойства смешанного дыма по данным поляризационных спектронефелометрических измерений // Оптика атмосф. и океана. 2014. Т. 27. № 01. С. 59-68.