## ВОЗМОЖНОСТИ ПАРАМЕТРИЗАЦИИ СТРУКТУРНОЙ ПОСТОЯННОЙ ТУРБУЛЕНТНЫХ ФЛУКТУАЦИЙ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ВОЗДУХА: CAO

Шиховцев А.Ю. $^1$ , Потанин С.А. $^{2,3}$ , Копылов Е.А. $^4$ , Больбасова Л.А. $^5$ , Сачков А.М. $^1$ , Ковадло П.Г. $^1$ 

<sup>1</sup>Институт солнечно-земной физики СО РАН, Иркутск, Россия <sup>2</sup>Государственный астрономический институт им. П. К. Штернберга Московского государственного университета имени М. В. Ломоносова, Москва, Россия <sup>3</sup>Физический факультет Московского государственного университета имени М.В. Ломоносова, Москва, Россия

<sup>4</sup>Институт астрономии РАН, Москва, Россия,

<sup>5</sup>Институт оптики атмосферы им. В.Е. Зуева СО РАН, г. Томск, Россия e-mail: Ashikhovtsev@iszf.irk.ru, sr.potanin@gmail.com, kopylov@inasan.ru, sla@iao.ru, asachkov2003@yandex.ru, kovadlo2006@rambler.ru

Аннотация. В настоящей работе рассматриваются возможности параметризации ночных и дневных значений структурной постоянной турбулентных флуктуаций показателя преломления воздуха в месте расположения Специальной Астрофизической Обсерватории.

Атмосферное угловое разрешение телескопа ограничено развитостью турбулентных неоднородностей показателя преломления воздуха по лучу зрения [1]. В настоящей работе обсуждаются возможности оценки структурной постоянной турбулентных флуктуаций показателя преломления воздуха в месте расположения Специальной Астрофизической Обсерватории. В качестве опорных используются данные измерений, выполненных 27 – 29 августа 2024 г., с помощью дифференциального монитора дрожания изображений звезд. На Рисунке 1 показаны изменения измеренной интегральной интенсивности оптической турбулентности в слое выше 500 м над подстилающей поверхностью (красные кривые) и общей интенсивности оптической турбулентности (черные кривые) [2]. Основываясь на данных измерений (используя их для калибровки), по данным реанализа ERA-5 были рассчитаны вертикальные профили оптической турбулентности. Усредненный вертикальный профиль оптической турбулентности с 25 и 75 % процентилями в ночное время в месте расположения Специальной Астрофизической Обсерватории показаны на Рисунке 2. На Рисунке 3 показаны вертикальные профили возмущенности в флуктуациях показателя преломления воздуха в ночное время в месте расположения Специальной Астрофизической Обсерватории.

Анализ Рисунков 2 и 3 показывает, вертикальная структура оптической турбулентности над Специальной Астрофизической Обсерваторией неоднородна. Над обсерваторией часто

образуются слои возмущенности в мелкомасштабных флуктуациях показателя преломления воздуха. Причем эти слои наблюдаются как в тропосфере, так и в стратосфере, хоть и меньшей энергетики.

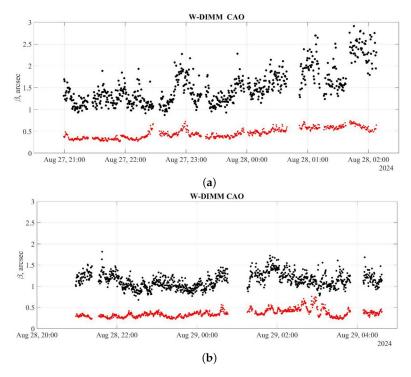



Рисунок 1 — Изменения измеренной интегральной интенсивности оптической турбулентности в слое выше 500 м над подстилающей поверхностью (красные кривые) и общей интенсивности оптической турбулентности (черные кривые)

При интегрировании вертикальных профилей оптической турбулентности по высоте, можно атмосферное угловое разрешение телескопа. Для САО медиана углового разрешения составляет  $\sim$ 1,21 угл сек. Первый квартиль соответствует 0,75 угл сек; третий квартиль составляет 2,31 угл сек (для периода с 1 июня по 15 сентября 2024 года). Для периода с 1 января 2023 года по 31 декабря 2023 года первый квартиль составляет 0,78 угл сек, а третий квартиль — 1,71 угл сек. Значения изопланатического угла изменяются в диапазоне от 1,0 до 3,0 угл сек (при  $\lambda$  = 500 нм). Эти значения относятся к характеристикам ночной атмосферы. Совокупный анализ данных измерений и расчетных характеристик с применением градиентной методики позволяет оценить и вертикальный профиль внешнего масштаба турбулентности (Рисунок 4). Для характеризации дневного качества изображений и уточнения приземных вариаций интенсивности оптической турбулентности в течение суток на территории САО мы организовали специальные мачтовые измерения приземных средних метеорологических величин и характеристик турбулентности.

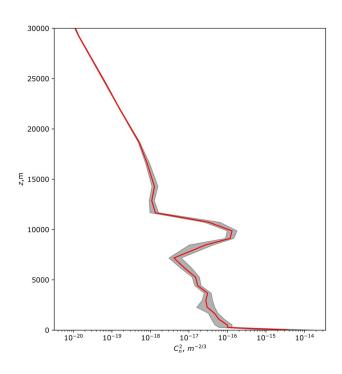



Рисунок 2 — Вертикальный профиль оптической турбулентности в ночное время в месте расположения Специальной Астрофизической Обсерватории

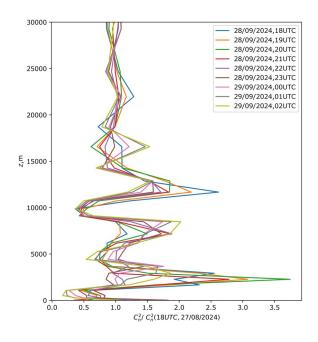



Рисунок 3 – Вертикальные профили возмущенности в флуктуациях показателя преломления

Измерения выполняются с марта 2025 г. в рутинном режиме. Планируется, что после накопления статистики будут найден характерный ход изменений приземных значений интенсивности оптической турбулентности в течение суток, что позволит уточнить вертикальные профили структурной постоянной турбулентных флуктуаций показателя

преломления воздуха. Вместе с этим, даже предварительные данные указывают на высокую переменность интенсивности оптической турбулентности в приземном слое атмосферы.

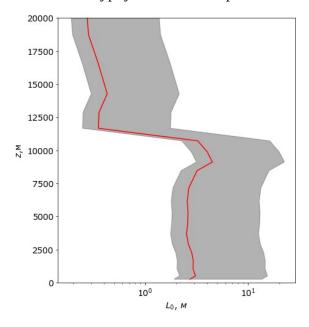



Рисунок 4 – Изменения внешнего масштаба турбулентности в ночное время в месте расположения Специальной Астрофизической Обсерватории

Таблица 1 показывает фрагмент полученных данных по приземным метеорологическим характеристикам в месте расположения CAO.

Таблица 1. – Фрагмент полученных данных по приземным метеорологическим характеристикам в месте расположения CAO

| Дата       | Время | V, m/c | $C_n^2$ , cm <sup>-2/3</sup> | $C_n^2$ opt, , cm <sup>-2/3</sup> |
|------------|-------|--------|------------------------------|-----------------------------------|
| 18.03.2025 | 9:00  | 4.18   | 4.69E-15                     | 3.44E-15                          |
| 18.03.2025 | 10:00 | 10.0   | 1.37E-14                     | -                                 |
| 18.03.2025 | 11:00 | 4.3    | 4.60E-17                     | 1.94E-15                          |
| 18.03.2025 | 12:00 | 1.48   | 9.90E-17                     | 1.64E-15                          |
| 18.03.2025 | 12:15 | 2.04   | 3.90E-16                     | 1.45E-15                          |

Благодарности. Исследование выполнено за счет гранта Российского научного фонда № 24-72-10043, https://rscf.ru/project/24-72-10043/.

- Шиховцев А.Ю., Ковадло П.Г., Больбасова Л.А., Лукин В.П. Особенности формирования наклонов волнового фронта на апертуре телескопа при различных вертикальных профилях оптической атмосферной турбулентности // Оптика атмосферы и океана. 2019. Т. 32, № 10. С. 819-823.
- 2. Shikhovtsev, A.Y.; Potanin, S.A.; Kopylov, E.A.; Qian, X.; Bolbasova, L.A.; Panchuk, A.V.; Kovadlo, P.G. Simulating Vertical Profiles of Optical Turbulence at the Special Astrophysical Observatory Site. *Atmosphere* 2024, *15*, 1346.